INFER-SEQUENCING-LIBRARY (✓ PRODUCTION)

Version: 11-09-2020 Tags: Quality / Control / QC / inference / library

This pipeline uses BWA, Picard, RSeQC and Samtools to build inferences on sequencing libraries used in a provided paired-end sequencing.

Pipeline dependencies

This pipeline requires the following packages to be run. Any other additional requirements are being installed dynamically.

Conda:

  • conda-forge::python=3.8.5

  • conda-forge::pytest=6.0.1

  • conda-forge::datrie=0.8.2

  • conda-forge::git=2.28.0

  • conda-forge::jinja2=2.11.2

  • conda-forge::pygraphviz=1.5

  • conda-forge::flask=1.1.2

  • conda-forge::pandas=1.1.0

  • conda-forge::zlib=1.2.11

  • conda-forge::openssl=1.1.1g

  • conda-forge::networkx=2.4

  • bioconda::snakemake=5.22.1

  • conda-forge::black=19.10b0

  • conda-forge::ipython=7.17.0

  • conda-forge::bashlex=0.15

Additionally, the following prerequisites are non-optional:

  • Conda

  • Genome sequence and annotation

Input files

Please find below the list of required input files:

  • Fasta-formatted genome sequence

  • GTF-formatted genome annotation

  • BED12-formatted genome annotation

Output files

Please find below the list of expected output files:

  • TSV formatted library information

Notes

This pipeline takes the cold storage into account. No need to copy your data in advance.

In order to install, use “conda” to install required environment, and “git” to clone the git repository.

Installation

While installing the workflow, you may run the following commands (order matters):

Case

Command line

git

# This command clones the github repository

if [ ! -d "${INFER_SEQUENCING_LIBRARY_DIR:?}" ]; then git clone https://github.com/tdayris-perso/infer-sequencing-library.git "${INFER_SEQUENCING_LIBRARY_DIR:?}"; fi

conda

# This command creates the conda virtual environment. It requires an

# access to the git repository (see above).

conda env create --force --file "${STRONGR_DIR:?}/workflows/quality/infer-sequencing-library/environment.yaml"

Testing

In order to test the pipeline, you may try the following commands:

Case

Command line

quick-test

cd "${INFER_SEQUENCING_LIBRARY_DIR:?}"

make conda tests

make all-unit-tests

make test-conda-report.html

make clean

Preparation

In order to prepare a run, you may try the following commands:

Case

Command line

activate

# This command activates the conda environment available after the

# installation process.

conda activate infer-sequencing-library || source activate infer-sequencing-library

gustaveroussy-references-hg38

# This points to HG38 references for Gustave Roussy's flamingo

FASTA="/mnt/beegfs/database/bioinfo/Index_DB/Fasta/Gencode/GRCH38/DNA/GRCh38.p13.genome.fa"

GTF="/mnt/beegfs/database/bioinfo/Index_DB/GTF/Gencode/GRCH38/release_34/gencode.v34.annotation.gtf"

BED="/mnt/beegfs/database/bioinfo/Index_DB/rseqc/hg38_Gencode_V28.bed"

COLD_STORAGE=(/mnt/isilon /mnt/archivage)

prepare-pipeline

# This command builds the configuration file

python3.8 "${INFER_SEQUENCING_LIBRARY_DIR:?}/scripts/prepare_pipeline.py" "${FASTA:?}" "${GTF:?}" "${BED:?}" --cold_storage "${COLD_STORAGE:?}" --workdir "${INFER_SEQUENCING_LIBRARY_PREPARE_DIR:?}"

Execution

In order to execute the pipeline, you may run the following commands:

Case

Command line(s)

local

source activate infer-sequencing-library || conda activate infer-sequencing-library

snakemake -s "${INFER_SEQUENCING_LIBRARY_DIR:?}/Snakefile" -r -p --configfile config.yaml -j 4 --use-conda

torque

# While reserving optimal threads and memory requirements,

# the choice of the queue might not be optimal.

# See profiles below.

source activate infer-sequencing-library || conda activate infer-sequencing-library

snakemake -s "${INFER_SEQUENCING_LIBRARY_DIR:?}/Snakefile" -r -p --configfile config.yaml -j 100 --cluster "qsub -V -d ${INFER_SEQUENCING_LIBRARY_WORKDIR:?} -j oe -l nodes=1:ppn={threads},mem={resources.mem_mb}mb,walltime={resources.time_min}:00" --use-conda

slurm

# While reserving optimal threads and memory requirements,

# the choice of the queue might not be optimal.

# See profiles below.

source activate infer-sequencing-library || conda activate infer-sequencing-library

snakemake -s "${INFER_SEQUENCING_LIBRARY_DIR:?}/Snakefile" -r -p --configfile config.yaml -j 100 --cluster "sbatch --mem={resources.mem_mb} --time={resources.time_min} --cpus-per-task={threads}" --use-conda

profile

# Requires slurm profile installation

source activate infer-sequencing-library || conda activate infer-sequencing-library

snakemake -s "${INFER_SEQUENCING_LIBRARY_DIR:?}/Snakefile" --configfile config.yaml --profile slurm

report

snakemake -s "${INFER_SEQUENCING_LIBRARY_DIR:?}/Snakefile" --configfile config.yaml --report